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We present an approach for assessing the uncertainties in simulation code outputs in which one focuses 
on the physics submodels incorporated into the code. Through a Bayesian analysis of a hierarchy of 
experiments that explore various aspects of the physics submodels, one can infer the sources of 
uncertainty, and quantify them. As an example of this approach, we describe an effort to describe the 
plastic-flow characteristics of a high-strength steel by combining data from basic material tests with an 
analysis of Taylor impact experiments. A thorough analysis of the material-characterization 
experiments is described, which necessarily includes the systematic uncertainties that arise form 
sample-to sample variations in the plastic behaviour of the specimens. The Taylor experiments can 
only be understood by means of a simulation code. We describe how this analysis can be done and 
how the results can be combined with the results of analyses of data from simpler material-
characterization experiments.  
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INTRODUCTION 

Our approach to understanding the uncertainties in 
simulation code predictions combines the principles of 
physics and Bayesian analysis. The focus is on 
understanding and quantifying the uncertainties in the 
simulation-code submodels and the numerical errors 
introduced in solving the dynamical equations. 
Bayesian analysis provides the underpinning for 
quantifying the uncertainties in models inferred from 
experimental results, which possess their own degree of 
uncertainty. The aim is to construct an uncertainty 
model that is based on inferences drawn from 
comparing the code’s predictions to relevant 
experimental results. In the context of the proposed 
framework, it is possible to design new experiments 
that can best provide data for reducing prediction 
uncertainty [1, 2].  
 
The sources of uncertainty in a simulation-code 
prediction of the outcome to a hypothesized physical 
situation include a) uncertainties in the dynamical 
equations, b) uncertainties in submodels that describe 
material properties, c) numerical-solution errors, and d) 
uncertainties in the initial and boundary conditions of 
the physical situation being simulated. All of these 
sources of uncertainty need to be taken into account in 
summarizing the uncertainties in simulation predictions. 
They must also be taken into account when analyzing 
the comparison between experimental data and 

simulation code output in order to make inferences 
about the physics submodels. 
 
We demonstrate our approach by analyzing a set of 
material-characterization experiments. We indicate how 
a similar data-fitting can be used to analyze the results 
of a Taylor impact test. In that test, a metal cylinder is 
propelled into a rigid wall, and the profile of the 
deformed cylinder is measured. A simulation code is 
needed to analyze the Taylor data. The goal is to be 
able to predict how well the code should be able to 
predict the results of the next Taylor test involving the 
same material. Fundamental to our approach is a 
thorough uncertainty assessment, performed as part of 
the analysis of each experiment, and the accumulation 
of information about the physics models gained by 
analyzing a hierarchy of experiments.. 

INFERENCE ABOUT PHYSICS MODELS  
FROM EXPERIMENTS 

Physics and engineering simulation codes are based on 
our understanding of the relevant physics processes 
involved in the phenomenon being simulated. Such 
codes are usually constructed out of building blocks, 
each of which is supposed to account for a specific 
behavior, for example, the behavior of materials are 
described by constitutive models. General physical 
principles provide the glue. Our goal is to make the 
simulation code robust so as to be able to handle a 
variety of physical scenarios.  
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Figure 1 schematically depicts the basic components of 
a simulation code that is meant to predict dynamic 
phenomena. To do a calculation, the simulation code 
requires full and complete specification of the physical 
situation. Thus, the code requires as input the properties 
of the materials involved over the range of conditions 
encountered in the experiment and the initial state of 
the system. Even though the diagram shows input from 
only one model of material behavior, more complicated 
situations could obviously require the input of models 
for several materials. The boundary conditions may be 
thought of as being included in the initial-state 
specification. The goal of the simulation code is to 
predict the behavior of the system at later times. To 
avoid extra complications, we consider only 
deterministic phenomena in which the state of the 
system at later times is uniquely determined by the 
initial state and material behavior. 
 
Our goal is to compare the output of a simulation code 
to experimental measurements. If we think about the 
experimental counterpart to the simulation depicted in 
Fig. 1, we realize that each aspect of the experimental 
situation that is uncertain is related to an uncertainty in 
each input to the code. In our approach, uncertainties 
are quantitatively described in terms of probability 
density functions (pdfs). We should, therefore, 
associate with each input variable a pdf describes our 
uncertainty in its value. The properties of the material 
may be uncertain for a number of reasons. For example, 
the exact composition and preparation of the material 
used in the experiment may not be known. 
Uncertainties can also arise because of variability in the 
material characteristics, such as variations in grain 
structure that result from specimen preparation, which 
may not be adequately enough controlled or measured 
to be neglected. Braces are used in Fig. 1 to indicate 
that uncertain quantities. 
 
In specifying the input for a simulation meant to match 
an experimental situation, it is important to specify the 
degree of uncertainty in the initial state, described in 
terms of its geometry, initial velocities, materials, etc. 
To obtain the most useful results, it is important in 
designing the experiment to minimize the significant 
sources of uncertainty, a concept that Oberkampf 
includes under his definition of “validation 
experiments.” [3] 
 
It is relatively easy to propagate uncertainties in inputs 
through a simulation code, a process that is called 
forward propagation of uncertainties. One way to think 
about propagating uncertainties through a simulation 
code is in terms of the Monte Carlo (MC) technique. 
The parameters that describe the initial conditions and 
the material behavior are drawn from the pdfs that 

describe our uncertainties in them. The variability in the 
output states of the simulation obtained for the set of 
random input values represents the uncertainty in 
simulation predictions.  
 
In the process of comparing experimental results with 
simulations, we wish to conduct inference about the 
simulation code, namely draw conclusions about the 
submodels. The usually approach for matching a simple 
model to experimental data is to employ least-squares 
or chi-squared fitting of the model to the data. We will 
argue later that this also feasible in the context of 
simulation codes. 
 

Material 
Behavior

{α}

Simulation

Initial State
{Ψ(0)}

Dynamic State
{Ψ(t)}

 
 

Figure 1. The simulation code calculates the dynamic 
state of a system from a specified initial state and a 
submodel that defines the behavior of the material 
involved, represented here by the parameter vector α. 
Uncertainties in the initial state and material models, 
which are designated by braces, propagate through the 
simulation code to yield uncertainties in the predictions 
made by the simulation. 
 
 
The Bayesian approach to analysis is perfectly suited 
for conducting inference about models [1, 3]. 
Fundamental to the Bayesian approach is the use of 
pdfs to quantify uncertainties. Bayes theorem gives the 
probability for a parameter vector, designated by a, as 
 
       ( | , ) ( | , ) ( | )p I p I p I∝a d d a a  ,   (1) 
 
where the vector d stands for the data. The first factor 
on the right is called the likelihood, which is the 
probability of the data, given the parameters and 
whatever relevant background information I is 
available, for example, which physical model is 
appropriate for the physical situation. The second factor 
is called the prior. It expresses the uncertainty we have 
in the parameters a before we consider the new data d. 
Bayes theorem provides the appropriate means for 
updating our knowledge about the parameters. The 
expression (1) is called the posterior (probability 
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distribution) for the parameters because it refers to our 
state of knowledge after the analysis is done. 
 
Prior information is not incorporated in many analyses, 
partly because of a lack of prior knowledge, and partly 
to keep the analysis objective. In these analyses, the 
prior in Bayes theorem (1) is effectively taken to be 
uniform. Consequently, the posterior distribution is 
proportional to the likelihood, and Bayesian analysis 
just amounts to the familiar likelihood analysis. We 
stress the importance of including a full uncertainty 
analysis in any complete analysis. Experimental 
uncertainties result in parameter uncertainties, which 
must quantified for the analysis results to be useful. 

HIERARCHY OF EXPERIMENTS 

To best understand the submodels contained in a 
simulation code, one should employ a hierarchy of 
experiments [1, 3], as schematically shown in Fig. 2. 
The level of integration is based on the complexity of 
the physical phenomenon involved, or roughly the 
number of physics models needed to describe each 
experiment. Ideally, one learns about the individual 
physics models used in a simulation code through basic 
experiments, which are designed to isolate and 
characterize each physics model. Then by doing more 
and more complicated experiments, one can learn more 
about the physics models by extending the range of 
physical conditions probed and also about possible 
interactions between different individual models, e.g., 
involving different materials. The ultimate goal is to 
combine the results from many (or all) experiments to 
reduce as much a possible the uncertainties in the 
models and their parameters. In the process, one should 
check that the models are consistent with all 
experiments. Any deviations from what is expected on 
the basis of the models may indicate that something is 
wrong with them. 
 
In Fig. 2, experiments 1, 3, and 4 are considered to be 
basic experiments because they involve only the 
individual material models, represented by the 
parameter vectors α, γ, and δ, respectively. Experiment 
2 is partially integrated because it involves two models, 
represented by α and β. With prior information about α 
coming from experiment 1, the analysis of the data 
from experiment 2 will provide information about  β, as 
well as further refining what is known about  α. 
Experiment 5 is fully integrated in this scenario because 
it involves all four models [1]. The nomenclature used 
here is slightly different from that used by Oberkampf 
[3], but the intent is similar. 
 
Figure 2 depicts how knowledge about the physics 
models flows from the analysis of experiments at one 

level to the next. Reference [1] suggests that this 
knowledge may be quantitatively specified in terms of 
uncertainty distributions in the parameter vectors α, β, 
γ, and δ. Bayes law may be used in each bubble to 
update our knowledge of the physics models. Thus, Fig. 
2 is a probabilistic network in which probabilities flow 
between nodes and are updated in each node on the 
basis of new experimental information. From this 
perspective, it appears feasible to systematically 
incorporate the information from all the experiments 
into a consistent set of parameters for the models 
involved. Because this approach is grounded in 
quantitative uncertainty assessment, the uncertainties in 
simulation predictions may be calculated through the 
Monte Carlo procedure described above. 
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Exp. 4 δ

Exp. 3 γ

Exp. 2 α β

Exp. 5 α β
γ δ

 
Figure 2. Diagram of the conceptual process for 
combining information from several experiments 
conducted for a hierarchy of experiments involving 
various levels of integration. Four underlying physics 
models, represented here by the parameter vectors α, β, 
γ, and δ, are required to account for the behavior of the 
fully integrated system. 
 
 

AN EXAMPLE RELATED TO CHARACTERIZING 
THE PLASTIC BEHAVIOR OF STEEL 

As a demonstration of how the above notions can be 
employed to update our knowledge of a physics model, 
we consider the following problem. The engineering 
task is to design a vessel that can adequately contain an 
experiment involving chemical explosives. For this 
project, the vessel is to be constructed from a high-
strength steel, HSLA 100. The first requirement is that 
the vessel must be able to handle a specified impulse in 
internal pressure without rupturing or leaking. For this 
discussion, we will focus on a secondary requirement, 
that shrapnel fragments produced in the explosion will 
not penetrate the vessel-wall. Our ultimate goal is to be 
able to predict the depth of penetration of a shrapnel 
fragment with a specific mass and impact velocity. 
Naturally the prediction must be accompanied by 
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estimates of its uncertainties. The estimated uncertainty 
in this prediction should be linked to the safety factor 
that needs to be built into the vessel design.  
 
Consistent with the preceding discussion, our approach 
to solving this problem is to determine what 
experiments are needed to characterize the stress-strain 
relationship for plastic flow of the metal. In the 
analysis, one would track the uncertainty through the 
analysis of a series of experiments to obtain an 
uncertainty estimate for the final prediction. The 
variables to consider include temperature, strain rate, 
variability in material behavior caused by composition, 
and processing.  
 
To be more specific, appropriate basic experiments 
might consist of quasi-static tests and Hopkinson-bar 
experiments. In the quasi-static experiments, specimens 
of the material are squeezed (or pulled), and the stress 
required to produce a measured strain is measured. The 
measurements in these experiments are typically very 
accurate (1%) and quite reproducible when the 
specimens are carefully selected to make sure their 
properties are uniform from sample to sample.  
 
In Hopkinson-bar experiments, a shock wave is passed 
through a small disc-shaped specimen, and the length of 
the specimen is measured as a function of time. 
Knowing the properties of the apparatus, it is possible 
to determine the stress-vs.-strain curve of the material 
at moderately high strain rates (for example, up to 
around 103 s-1). Hopkinson-bar data typically possess 
larger errors than quasi-static data. 
 
Because the stress-strain behavior of metals like HLSA 
100 are known to depend on the rate at which the strain 
develops, the Hopkinson-bar experiments are needed to 
provide data that are more pertinent to the target 
application. Even so, the strain rates of the target 
application are higher than occur in Hopkinson-bar 
tests. This consideration argues for conducting an 
experiment of intermediate complexity that provides 
information about very high strain rates. The well-
known Taylor impact test serves the purpose well; 
strain rates of 105 s-1 are routinely achieved. Thus, the 
Taylor test bridges the gap between moderate and high 
strain rates.  
 
To complete the hierarchy of experiments and to check 
the ability of the simulation code to accurately predict 
shrapnel penetration, it clearly would be desirable to 
conduct experiments that are as close to the intended 
application as possible. Other basic- and intermediate-
level experiments may potentially be required to 
describe the penetration of steel plate by a fragment, 
such as material fracture and the equation of state of the 

material as it heats and melts. Furthermore, a different 
type of simulation code, for example, a Eulerian code, 
will most likely be required to simulate the fragment 
penetration phenomenon.  The common thread is the 
material model, which evolves throughout the process 
of analyzing the hierarchy of experiments. 

MATERIAL-CHARACTERIZATION EXPERIMENTS 

The first phase of the project is to conduct the basic 
material-characterization experiments consisting of 
quasi-static tests and Hopkinson-bar experiments, as 
described above.  
 
Figure 3 shows the results of seven material 
characterization experiments conducted at LANL on 
HSLA 100 samples. Because large plastic deformations 
and strain rates in excess of 105 per second are expected 
in the target application, plasticity and strain-rate 
dependence must be included in the stress-strain model. 
 

 
 
Figure 3. Comparison between data from material- 
characterization experiments for a variety of 
temperatures and strain rates and the ZA model fit to 
the data. The vertical bar to the right of each curve 
indicates the size of the estimated systematic offset for 
that curve. 
 
 
We use the Zerilli-Armstrong (ZA) model for rate-
dependent plasticity: 
 

  6
1 5 2 3 4exp log p

p p T
t

α ε
σ α α ε α α α

  ∂
= + + − +   ∂   

, (2) 

 
where εp and σ denote the equivalent plastic strain and 
resulting stress, respectively, and T is the temperature at 
the start of the experiment. The parameters αi are 
material specific, and once more, they may depend on 
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how the material has been processed. The ZA formula 
is based on a dislocation-mechanics model, which may 
not hold for all materials or experimental conditions. 
 
From Eq. (2), we see that only two parameters (α5 & α6) 
specify the basic dependence of the stress as a function 
of strain. The four remaining parameters provide an 
additive offset as a function of temperature and strain 
rate. While the Zerilli-Armstrong model may not 
capture all aspects of the behavior of the data, we will 
assume that it is one that has been specified for this 
project. Our job is to determine the best parameters to 
use for HSLA 100 and their uncertainties, and then 
predict the uncertainties in simulations based on that 
model. 
 

LIKELIHOOD ANALYSIS 

Before describing the details of the analysis that has 
been done using the data displayed in Fig. 3, let us 
briefly review a standard approach to fitting a nonlinear 
model to data by the minimum chi-squared method [5]. 
 
The likelihood is the probability of the measured data 
for a specified parameter vector a. If the errors in the 
measured data d are Gaussian distributed and 
independent, the likelihood is given by 
 

    
2

2

[ ( )]1( | ) exp
2

i i

i i

d yp
σ

 −
∝ − 

 
∑ ad a  ,    (3) 

 
where σi is the expected rms deviation of the 
measurement di The corresponding value given by the 
model for a specified parameter set a is designated by 
yi.  
 
We recognize the sum in the exponential in Eq. (3) as 
the familiar chi squared, χ2, which is often used to 
quantify the discrepancy between measurements and a 
model. The parameters that best fit the data are 
typically taken as those that maximize the likelihood, 
or, equivalently, minimize χ2. A standard tactic is to 
expand the model value yi at the value of the 
independent variable xi in terms of a Taylor series, 
 

0 0

0
( , ) ( )i

i i i i j j
j j a

yy y x y a a
a

∂
= = + − +

∂∑a . (4) 

 
The complete set of derivatives make up the so-called 
the Jacobian matrix, J. By dropping higher-order terms, 
chi-squared can be approximated as a quadratic 
function around its minimum,  
 

    ( ) ( )2 2T1
2 ˆ ˆ ˆ( ) ( )χ χ= − − +a a a K a a a   ,  (5) 

 
where â  is the parameter vector at the minimum in chi-
squared, and K is the curvature matrix of chi squared at 
â , which is commonly called the Hessian. It can be 
written in terms of the Jacobian, evaluated at â , as 
 

    [ ]
2 2

T

ˆ
jk

j ka a a

χ∂
= =

∂ ∂
K J J  .      (6) 

 
As noted above, when a flat prior is assumed, the 
posterior is proportional to the likelihood.  In the 
quadratic approximation for χ2 given in Eq. (5), the 
posterior is a Gaussian 
 

    

( ) ( )1

/ 2

T1
2

1( | )
det[ ] (2 )

ˆ ˆexp

np
π

−

= ×

 − − −
 

a d
C

a a C a a

    (7) 

 
which is written in a way to explicitly display the 
covariance matrix, C: 
 
    1Tˆ ˆcov( ) ( )( ) 2 −= − − ≡ =a a a a a C K  .  (8) 

The covariance matrix describes the degree of 
correlation among the uncertainties in the parameters. 
The analysis of nearly every type of experiment leads to 
off-diagonal terms in the covariance matrix, which must 
be stated for a full specification of the uncertainties in 
the parameters. The off-diagonal elements of the 
covariance matrix are often expressed in terms of the 
correlation coefficients, /ρ =ij ij ii jjC C C . 

ANALYSIS OF MATERIAL-CHARACTERIZATION 
EXPERIMENTS 

We now outline the analysis of the material-
characterization experiments to estimate the ZA 
parameters and their uncertainty. The approach is, in a 
sense, a straightforward chi-squared analysis, but it has 
some noteworthy aspects, for example, the inclusion of 
systematic uncertainties.  
 
In looking at the unedited data sets from the seven test 
results shown in Fig. 3, the first conclusion is that the 
data are inconsistent with the simple dependences 
contained in the ZA model. Specifically, at high and 
low temperatures, the data show a different stress-strain 
behavior than at room temperature. As stated above, 
one of the requirements of the project is to employ the 
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ZA model. To make do with the ZA model, the wise 
thing is to avoid trying to incorporate inconsistent data 
in fitting the ZA model. Thus, from the high- and low-T 
experiments, we include only the low strain data (less 
than about 0.05) in determining the ZA parameters.  At 
temperatures that differ significantly from the target 
operating conditions of room temperature and high 
strain rate, a different material-damage model seems to 
be in effect at large strains, so these are avoided. 
 
A well-known feature of Hopkinson-bar experiments is 
the presence of wiggles in the measured curve at low 
strains, which is particularly evident at strains of 0.02 
and below (not included in Fig. 3), but also observable 
at higher strains. These oscillations, caused by 
reflections of shocks within the apparatus, make 
portions of the Hopkinson data less useful. Taking the 
variability of the measurements into account and 
considering the inherent difficulties in the experiments, 
we assign standard (rms) error bars to the Hopkinson 
data of 2%. Because of their better reproducibility for 
carefully selected specimens, we assign standard error 
of 1% to the quasi-static data.  
 
Difficulties in matching the strain-rate dependence of 
the data sets at fixed (room) temperature have prompted 
us to consider sources of systematic uncertainties. 
Auxiliary experiments on specimens taken from various 
locations in a 5.08-cm-thick plate of HSLA 100 
indicate that the stress-strain curves can systematically 
differ from each other by an additive constant. From a 
limited number of tests, we estimate the rms variation 
in the offset between different samples is approximately 
20 MPa. 
 
We include this sample-to-sample variability in the 
analysis by treating it as a systematic uncertainty. 
Because the observed differences between different 
samples amount to a small vertical shift of the curves, it 
is appropriate to incorporate them in terms of an 
additive offset parameter for each curve. This  
effectively adds seven more parameters to the model, 
which need to be estimated as well as the six α’s in the 
ZA model. To include this systematic effect in a full 
analysis of the seven data sets, the appropriate 
expression for the minus-log-likelihood is 
  

2
21 1

2 2 2log ( | , ) ( ) k
k

k k k

p I ϕ χ
σ
∆

− = = +∑ ∑a d a , (9) 

 
where the index k identifies the data set. The first term 
is a sum of χ2 values for each data set at a specific 
temperature and strain rate. The second sum represents 
the prior probability for the offset parameters ∆k , and 

σk is the rms deviation of the prior distribution on ∆k , 
taken to be 20 MPa in the current analysis. This term is 
needed to constrain the vertical offset of the curves.  
Without it, parameters α1 through α4 would be 
indeterminate.  
 
The above model is fit to the data shown in Fig. 3 using 
the general approach described earlier to minimize the 
function given in Eq. (9). The Jacobian (sensitivity) 
matrix is estimated at each optimization iteration by the 
straightforward method of finite differences.  
 
The final fit to the data is shown in Fig. 3. The vertical 
bars at the end of each curve display the fitted value for 
the offset of that curve. The seven offset values range 
from -37 MPa to 11 MPa, with a mean of -9 MPa and 
an rms value of 19 MPa, which is reasonably consistent 
with their assumed rms deviation, 20 MPa. The ZA 
parameters obtained from the fit, and their rms 
uncertainties, are given in Table 1. As important as the 
uncertainties in the individual parameters are their 
correlation coefficients, which are presented in Table 2. 
Use of the rms errors without consideration of the 
correlation coefficients would seriously misrepresent 
the results of this analysis, as will be demonstrated 
shortly. 
 
Standard Monte Carlo techniques can be used to draw 
random ZA parameter vectors from their uncertainty 
distribution specified in Tables 1 and 2. Figure 4 shows 
a plot of the curves that result from 20 such random 
draws for the conditions of room temperature and high 
strain rate. From the comparison of these curves to the 
Hopkinson-bar measurements, we conclude from this 
plot that the parameters and their uncertainties plausibly 
represent the data for the conditions of the target 
application.  
 
 
 

 
 

Table 1. The ZA model parameters and their 
standard errors, estimated from the data shown in 
Fig. 3. The units correspond to those when the 
variables in Eq. (2) are measured in MPa, deg K, 
and seconds. 
 

    α1           103 ± 33 
    α2           954 ± 63 
    α3    0.00408 ± 0.00059 
    α4  0.000117 ± 0.000029 
    α5           996 ± 22 
    α6        0.247 ± 0.021 
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The above procedure is highly recommended whenever 
one does model fitting.  In effect, it closes the loop 
between the data and their uncertainties and inferences 
made in terms of parameters. 
 
A major contribution to the uncertainty in the stress-
versus-strain relation arises from the sample-to-sample 
variability, taken into account in the above analysis as a 
systematic error. The importance of specifying and 
including correlations in the use or treatment of 
uncertainties is graphically demonstrated in Fig. 5. The 
stress-versus-strain curves are derived by randomly 
drawing 20 ZA parameter vectors from the 
uncertainties in the individual parameters stated in 
Table 1, but neglecting the correlation coefficients 
specified in Table 2. The variation among the curves is 
now unreasonably large compared to the error bars in 
the data.  
 
 

 
 
Figure 4. A set of plausible stress-strain curves for 
room temperature and high strain rate obtained by 
drawing Monte Carlo samples from the uncertainty 
distribution in the ZA parameters as derived from the 
data shown in Fig. 3.  

The above description of the analysis of the HSLA 100 
is meant to emphasize the importance expertise plays in 
what seems to be a straightforward analysis.  The 
selection of which data to include in the fit is based on 
the conditions of the target application, and an 
understanding of the plastic behavior of metals.  
Furthermore, the inclusion of systematic effects 
involves considerations that go beyond the data 
themselves. 
 
The systematic uncertainties can in principle be reduced 
through careful selection or preparation of the samples.  
However, in the end, the steel that is used to 
manufacture the containment vessel will most likely not 
be so carefully selected.  The sample-to-sample 
variation in material properties would have to be taken 
into account at that stage.  The uncertainties must be 
included in the overall process in a careful and 
systematic way, and need to be documented throughout  
 

 
 
Figure 5. A set of stress-strain curves for room 
temperature and high strain rate obtained by drawing 
Monte Carlo samples from the same uncertainty 
distribution used to generate Fig. 4, except for 
neglecting the correlations given in Table 2. 
 

Table 2. Correlation coefficient matrix for the ZA model parameters obtained with the fit  
to the data shown in Fig. 3. The covariance matrix is estimated using Eq. (6). 

 
       α1        α2       α3        α4        α5       α6     
 α1   1       -0.083    0.372    0.207   -0.488    0.267   
 α2   -0.083    1        0.344    0.311    0.082    0.130   
 α3   0.372    0.344    1        0.802    0.453   -0.621   
 α4   0.207    0.311    0.802    1        0.271   -0.466   
 α5  -0.488    0.082    0.453    0.271    1       -0.860   
 α6   0.267    0.130   -0.621   -0.466   -0.860    1       
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the process to ensure that all uncertainties are included 
in their proper place, but not any more than necessary. 

TAYLOR IMPACT TEST  

The Taylor impact test represents an experiment of an 
intermediate level of complexity in the hierarchy of 
experiments chosen to elucidate the material model for 
HSLA 100. In the Taylor impact test, a cylindrical 
sample of material is propelled into a fixed, rigid 
surface, as depicted in Fig. 6. Taylor tests are often 
performed to confirm the plastic behavior of a material 
under severe strain conditions. Extremely high plastic 
strains and strain rates occur at the crushed end of the 
rod, resulting in severe local deformation [6, 7]. The 
experimental data usually consist of measurements of 
its final deformed profile.  
 
Simulations of the Taylor impact test have been 
performed using Abaqus, a general-purpose finite-
element modeling and analysis package, which employs 
explicit time integration [8]. The modulus of elasticity 
is taken to be E = 310 GPa and the material density, ρ = 
7,750 kg/m3. Verification tests were performed to make 
sure that solution errors are sufficiently small. 
 
We use the Monte Carlo technique to illustrate the 
forward propagation of uncertainty through the 
simulation code. We consider a situation in which the 
only parameters that are uncertain are those in the 
above ZA stress-strain model, stated in Eq. (2). We 
employ the full uncertainty distributions derived in the 
previously-described analysis of the material 
characterization experiments. 
 

 
Figure 6. In the Taylor impact test, a cylinder is driven 
with high velocity into a fixed, rigid plate (left) 
producing a significant permanent deformation in the 
cylinder after rebound (right).  

As demonstrated in Fig. 4 for the ZA model, the Monte 
Carlo process consists of sampling parameter values 
from a specific uncertainty distribution and running the 
simulation code for each set of values. Based on the ZA 
parameters and their uncertainties obtained in the above 
analysis of the material-characterization data, Fig. 7 
shows the results of following this process to generate 
seven final deformed profiles of a cylinder simulated 
for an impact velocity of 260 m/s. The observed 
variation in shape indicates the uncertainty in the 
profile that is produced by the uncertainty in the plastic 
stress-strain relation derived in the preceding analysis. 
A quantitatively accurate characterization of the 
uncertainties in the simulation output would require 
many more realizations. 
 
In this exercise, we have ignored the uncertainties in the 
experimental set up. These could readily be included in 
the Monte Carlo technique. For example, to include the 
uncertainty in the impact velocity, it could be included 
as an additional random variable, with its uncertainty 
described by its own pdf. By drawing random samples 
for the velocity from its pdf and including these random 
values in the simulation process, the effects of uncertain 
 

 
 
Figure 7. Seven representative Taylor test profiles 
predicted for an impact velocity of 260 m/s, obtained 
with a Monte Carlo technique employing uncertainties 
come from the analysis described above. The variability 
in these profiles indicates their uncertainty. The data 
points represent hypothetical measurements of the 
deformed-cylinder profile from a corresponding 
experiment.  
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velocity are easily included in the Monte Carlo 
uncertainty calculation. Other uncertainties in the This 
approach to assessing the consequences of uncertainties 
in the experimental conditions provides a good basis for 
designing validation experiments, for example, as 
discussed in Ref. [9] for structural dynamics 
applications. 

ANALYSIS OF TAYLOR DATA USING A 
SIMULATION CODE  

The data from a Taylor experiment may be analyzed in 
much the same way as was done above for the material-
characterization experiments. Systematic experimental 
uncertainties, for example, in the impact velocity, may 
be included in a way similar to that used above to 
include the sample-to-sample variations. A contribution 
similar to the second term in Eq. (9) is necessary to 
account for the systematic offset for the specific sample 
used in the Taylor test. One viable approach to chi-
squared minimization is to use the same methods as 
described above. When the simulation code is treated as 
a black box, the Jacobian matrix may be estimated by 
the method of finite differences. When the simulation 
code is available, however, the more sophisticated 
method of automatic differentiation may prove useful 
[10, 11]. 
 
Figure 2 depicts the general procedure that we have in 
mind to update our knowledge of model parameters 
with the analysis of each new experiment. Having 
analyzed the material-characteristic experiments, which 
are considered to be basic experiments in Fig. 2, we 
may use those results as priors to the analysis of the 
more complex Taylor experiments. Bayes theorem, 
given in Eq. (1), provides the proper means for 
combining the prior pdf from the first analysis with the 
likelihood of the subsequent Taylor analysis [1]. The 
uncertainties from the above analysis may be included 
by adding to the expression given in Eq. (9) a term to 

represent the prior, ( ) ( )T1
2 ˆ ˆ-1

1 1 1a a C a a− − , where 

ˆ1a  is the ZA parameter vector estimated in that 

analysis and 1C is the estimated covariance matrix. 
 
When this process is employed to set the values of the 
model parameters, it is often called calibration, which is 
different from what we are proposing. By basing this 
parameter-updating process on Bayes theorem and 
quantitative uncertainty estimates, the process becomes 
one of inference [10]. In a sense, the Monte Carlo 
technique for estimating uncertainties in simulation-
code output described above is reversed; the 
uncertainties in the parameters are determined from the 
combined uncertainties in the measurements and the 

effects on the simulation of uncertainties in 
experimental set up. Since the inference procedure 
involves determining the uncertainties in model 
parameters, it provides the means for predicting the 
uncertainty in simulation output in other physical 
scenarios. Further explanation of the details of the 
process are presented in Ref. [1]. 

CONCLUSION 

We have presented an approach to understanding the 
uncertainties in predictions made by simulation codes. 
The first place to look for uncertainties in simulation 
code output is the uncertainties in the physics models 
that are incorporated in the simulation code. All sources 
of output uncertainties must be considered, including 
the numerical implementation of the physics models, 
especially the finite size of the finite elements or mesh, 
and aspects of the physics that are not accounted for. 
This framework highlights the importance of 
conducting experiments that are thoughtfully designed 
to provide results that can be quantitatively compared to 
simulation codes. A hierarchy of experiments should be 
included in the overall scheme to provide validation of 
the physics models in a variety of circumstances and 
over a wide range of experimental conditions. 
 
The focus here has been on the parameters in the ZA 
model. The Bayesian methodology can address other 
questions, for example, comparison of two or more 
competing models to decide between them. It is 
generally applicable to answering all questions that one 
might pose about models. 
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